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Contributions t o  Linear System Theory 

by 
+ ** Leonard Weiss and R.E. Kialman 

1. Introduction. 

The characterization of a physical system, i.e., the cataloging 

of the  s ign i f icant  f a c t s  concerning i t s  physical behavior generally 

suggests the  mode of representation of the system for purposes of analysis.  

Newtonian Illechanics as w e l l  as qmntum mchanics is  based on the 

comept of s t a t e  f o r  describing physical systems. In  the spec ia l  case 

where the  s t a t e  space is finite-dimensional and the evolution of the 

system is governed by a d i f f e r e n t i a l  o r  difference equation, a large 

body of theory has been developed over the past f e w  years ("state-variable" 

techniques), especial ly  with respect t o  problems involving control  systems 

il, 2 1. 
much of the literature on l i nea r  systems continues t o  be wri t ten i n  te rns  

of input-output relations,  since, i n  many s i tuat ions,  the l a t t e r  i s  a 

na tu ra l  mode of system description. The p a r a l l e l  developments of the 

input-output and the state-variable approaches t o  system analysis have 

l e f t  much i n  t h e i r  wake tbt i s  e i t h e r  not w e l l  understood o r  imprecisely 

explained . 

- 

Despite the increasing emphasis on the  "state-variable" approach, 
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The purpose of this paper i s  t o  give a self-contained exposit ion 

of some important f ace t s  of l i n e a r  system theory which goes beyond w h a t  

is  presently avai lable  i n  the l i t e r a t u r e .  Specif ical ly ,  our concern i s  

with the c l a s s  of dynamical systems which are governed by a set  of l i n e a r  

ordinary d i f f e ren t i a l  equations of f i n i t e  order i n  the  s t a t e  variables.  

New results (see [ 3 ] )  are presented i n  the  theory of cont ro l lab i l i ty ,  

observability, and canonical decomposition of such systems. These re- 

s u l t s  are used i n  a detailed study of the r e l a t i o n  of the  state-variable 

representation of a system t o  ce r t a in  well known types of time-domain 

input-output representations . 

2. The Primary Representation. 

2.1. Defini t ion of a system. 

For completeness, we give an  axiomatic de f in i t i on  of a system t o  

which a l l  representations can be related. 

adopt i s  a modified version of that previously stated i n  [l]. 

of these axioms i s  t o  motivate t o  some extent  the concept of the  s t a t e .  

We shall not be concerned, however, w i t h  a technica l  analysis  of these 

axioms, and w i l l  r e s t r i c t  a l l  fu ture  considerations t o  the analysis of 

t he  "state-variable" d i f f e r e n t i a l  equation (2.1) . 
now t o  be s t a t ed  w i l l  serve as motivation f o r  taking the  d i f f e r e n t i a l  

equation (2.1) as the primary representation of a system. 

The system of axioms we shall 

The purpose 

I n  short, t he  axioms 

DEFINITION 1. By a dynamical system w e  shall mean a mathematical 

s t ruc ture  described by the  following ax iom : 

(i) There is  given an abs t r ac t  space, C, ca l l ed  the s t a t e  space 

and a s e t  7 of values of time a t  which t h e  behavior of the  system i s  

defined. 

ordering > [or <I. If tl, to E the statement tl >to [or 

t < t 1 w i l l  mean tha t  tl is i n  the  future  [or  i n  the past] w i t h  respect 

2 is  a n  ordered subset of the  real numbers, with the usual 

1 0  
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t o  to; equivalently, to is i n  the past [or i n  the fu tu re ]  with res- 

1' pect t o  t 

(ii) There i s  given an abstract space fl of functions of t i m e  

u: 7 + (where 'u is  a Euclidean space) which represent the admis- 

s ible  inputs  t o  the system. 

(iii) For any i n i t i a l  t i m e  t E 'r, any i n i t i a l  s t a t e  x E C, and 

any input u € R defined f o r  t 2 7 [or t 5 71, states a t  o ther  values 

of t i m e  of the system are determined by a given t r a n s i t i o n  funct ion 

c p :  R x 5' X '7' x C + C, 

has the  following propert ies :  

which i s  writ ten as cpu(t; 7, x). This function 

( a )  c p u ( ~ ;  T, x) = x f o r  any u E n, 

(b) q,(t; 't, x) i s  defined only when t 2 T [or t 5 T I .  

(4 (Pu(t2; to, XI = 'Pu(t*; tl, cpu(tl; to, x)) f o r  a n  u E R, 

T E '7, x E C. 

a l l  - to, tl, t2 in 7 such that 

t 5 t * t 1, and a l l  x E C. 

t2 S tl 5 to [E 

2 -  1 -  0 

(4 If yT, t ]  denotes the equivalence c l a s s  of functions 

v E R whose values agree with u on the  set [T, t ]  rl 'T*, 
then - 

( i v )  Every output of the system a t  time t is  given by the  value of 
t a real funct ion +: '7 x c + R; where belongs t o  a given c k s s  Y. 

(v) The functions cp and I) are continuous with respect t o  suit- 

and the reals, as w e l l  as the in- able  topdlogies defined on 

duced product topologies. 
C, ?-, R, 

I- 

as well as the state. The corresponding extension of a l l  results i n  this 
paper t o  hold f o r  t h i s  case is straightforward. 

A more general  approach would be t o  make the  output depend on t h e  input 
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It i s  understood that the  preceding axioms define a mathematical 

s t ructure ,  not a physical system. It is found, however, t h a t  the be- 

havior of ccmplex interconnected objects  obeying t h e  l a w s  of c l a s s i c a l  

physics can usually be described i n  terms of these axioms. 

we shall always mean a dynamical system i n  t h e  sense of Defini t ion 1. 

The modification of the axiom system i n  Defini t ion 1 from t h a t  i n  reference 

111 consis ts  i n  allowing e x p l i c i t  consideration of t h e  two opposite order- 

ings of the  set "2' . 
tu rns  out t o  be of significance, as w i l l  be seen shortly.  

11 By a system" 

The repercussions of this seemingly minor point 

FTom now on we shall r e s t r i c t  a t t en t ion  t o  a special class of systems 
which are: 

(i) finite-dimensional ( c = f in i t ed imens iona l )  

(ii) continuous-time ("2: = real l i n e  and cp, $ = smooth 

real functions of t )  

(iii) l i n e a r  ($ is  l i n e a r  i n  x and cp is  l i n e a r  j o i n t l y  

i n  x and u) 

( i v )  multi-input, multi-output ( u is p dimensional, 

Y has r elements). 

Under these special  assumptions, it can be proved [4] that the t r a n s i t i o n  

funct ion of the most general dynamical system which satisfies the  above 

axioms is  a solut ion of the vector  d i f f e r e n t i a l  eqmt ion:  

(2.1) 

where 

dx/dt = F( t )x  + G ( t ) U ( t )  
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x = s t a t e  vector  (real n-vector) 

y ( t >  = output+ (real r-vector) 

u ( t >  = input+ (real p-vector) 

F ( t )  = n x n real matrix 

G ( t )  = real 

H ( t )  = r e a l  

ii i< p matrix 

r x n matrix 

* 
and, f o r  convenience, F(*), G ( - ) ,  H ( * ) ,  a r e  Ca, functions of t. 

We shall c a l l  (2.1) the state-variable d i f f e r e n t i a l  equation. 

2.2. 

Given the i n i t i a l  condition x ( t o )  = x 

Solution of the State-Variable Di f f e ren t i a l  Equation. 

it i s  w e l l  known [ 5 ]  
0' 

t h a t  the solut ion of (2.1) i s  uniquely defined and is  given by 

t 

t 
x ( t )  = X(t)X-'(to)x0 + / X(t)X'l(T)G(-r)u(T)d-r, 

0 

where X( ) 
t i o n  

is a fundamental matrix solut ion [ 5 ]  of the homogeneous equa- 

( 2 . 3 )  dx/dt = F ( t  )x, 

i .e.,  

* 
For many arguments Cn o r  even Co is su f f i c i en t  

~ 

From now on, unless otherwise specified, the word "input" denotes "vector 
input" and the  word "output" denotes "vector output". 
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To place (2.2) i n  d i r e c t  correspondence with our axioms, w e  write 

(2.2) i n  terms of the t r a n s i t i o n  matrix @(%, T), which i s  defined by 

(2.4) @(t, 7 )  = X(t) [X(T) l ' l .  

This def in i t ion  i s  equivalent t o  s t a t i n g  t h a t  @ satisfies the r e l a t ions  

d@/dt = F(t)@, @(to, to) = I. 

Then (2.2) becomes 

t 
(2.5) x ( t )  = @(t, t o ) X o  + J @(t, T ) G ( T ) U ( T ) d T ,  

and y ( t )  is  then given e x p l i c i t l y  as 

It is easy t o  v e r i f y  that the  function cp defiried by 

where x ( t )  is given by (2 .5 ) ,  s a t i s f i e s  axiom (iii). The remaining 

axioms are a lso  easy t o  verify.  

It is important t o  remark t h a t  the function cp defined above not 

only s a t i s f i e s  axiom (iii) but has the  addi t iona l  property of being defined 

2 to or  t 5 t Since cp can be regarded f o r  a l l  - t, to, not merely t - 
as a properly defined t r ans i t i on  funct ion with e i t h e r  ordering i n  t i m e ,  it 
is  c l e a r  that  spec i f ica t ion  of t he  ordering i s  an  e s s e n t i a l  point i n  i n t e r -  

p re t ing  a d i f f e ren t i a l  equation as a dynamical system. 

0. 
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2.3.  CSystems and ASystems. 

If the time i s  ordered i n  the usual physical way, (> i n  Def. 1) 

then axiom ( i i i - d )  follows from w h a t  i s  usually cal led the  Principle of 

Causality: the  future  has no e f f ec t  on the  present o r  past. More pre- 

cisely,  we shall say 

DEFINITION 2. A causal (C-) system is characterized by the - 
property that the behavior of the system at any t ime 

determined by events i n  the past and present, i.e., at 
to i s  completely 

t 6 to. 

DEFINITION 3 .  An ant icausal  (A-) - system is characterized by the  

p r o p r t y  that the behavior of the system at time 

determined by events i n  the  present and future,  i.e.,  at  

to is completely 

t 2 to. 

I n  view of the axioms given above, we may say that 

(i) I n  a C-system the  s t a t e  a t  time to summarizes the present 

and the past his tory of the system. 

(ii) I n  an A-system, the s ta te  a t  time to summarizes the pre- 

sen t  and the future  h is tory  of t he  system. 

Whether a given system is of type C o r  A depends so le ly  on the 

ordering of the s e t  -7. 
t h e  d i f f e r e n t i a l  equations of the system no choice of the time ordering 

is  implied; t h i s  ordering m u s t  always be specified separately.  It i s  
not even obvious at  present whether o r  not there  is  a na tura l  direct ion 

of the flow of time in the physical world [61. 

As was seen above, by merely writ ing down 

* 

Fig. 1 gives a graphical i l l u s t r a t i o n  of the  in te rpre ta t ion  of a 

d i f f e r e n t i a l  equation (2.1) as a C o r  A system. 

* 
In  writ ing down formula (2.5), it is often t a c i t l y  assumed that t > to. 

This means a p r t i c u l a r  ordering has been chosen. But the formula i s  
invariant  w i t h  respect t o  interchanging t and to, which shows that the 
adopted ordering is a r b i t r a r y  and not a property of the  d i f f e r e n t i a l  eqm- 
t ion .  
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One might conceive of a system which is noncausal, i .e.,  

ne i ther  of type C nor A. 

of the idea l  low pass f i l t e r  [21 whose behavior at  any given time depends 

on both past and future  stimuli. An idea l  low-pass f i l t e r  is not a dyna- 

mica1 system i n  the sense of Definit ion 1. 

f o r  some 

After all,  some charac te r i s t ic  functions (namely those whose inverse 

Fourier transform has negative values) do not define probabi l i ty  densi ty  

functions, and therefore such "characterist ic" functions have nothing t o  

do with random variables! 

An example which i s  frequently quoted i s  that  

It is  not a t  a l l  i l l o g i c a l  
If frequency-response" functions t o  7 not define a dynamical system. 

The signficance of the role played by noncausal systems i n  system 

theory is  not present ly  well established. For this reason, we make no 

fu r the r  references t o  such systems i n  t h i s  p p e r .  

2.4. Control labi l i ty  and Observability. 

The concepts mentioned i n  the  t i t l e  have come t o  play an important 

role  i n  the  development of system theory, especial ly  i n  the theory of 

control  systems (see reference [ I ] ) .  O u r  purpose here is t o  define these 

concepts and show how they r e l a t e  t o  system structure .  

It is in t e re s t ing  t o  note tha t  there  a= t w o  natural  ways of look- 

ing at each concept [3] although the past l i t e r a t u r e  has been mainly con- 

cerned with only one of these ways. 

general, depend on the type of information sought. 

as follows. 

"he choice made between them w i l l ,  i n  

The def ini t ions a r e  

Assume a given ordering of the s e t  'z' . "hen 

DF,FINITION 4. 

(i) The couple (xo, to) (hereafter referred t o  as a phase" 

Consider a system (2.1). 

11 

of the system) i s  sa id  t o  be causal (2-) control lable  [or an t icausa l  

(6-) controllable] if there  ex i s t s  some f i n i t e  tl > to [or t-l < to] 
and some input  u [or u ] which t r ans fe r s  (xo, to) t o  [to, 5 1  [t,l, to] 
(0, tl) [or bo, t 0 ) t o  (0, t-,)]. 
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(ii) A phase which i s  both C-controllable and A-controllable 

is  b id i lec t iona l ly  (2-) controllable,  

(iii) If every phase (x, to) is C- [or A- o r  B-] controllable 

v x  6 C, then the  system is - C- [or A- - o r  - B-1 control lable  at too - 
( i v )  If every phase is  C- [or A- o r  B-1 controllable,  t he  system 

i s  completely - C- [or A- - o r  - B-1 controllable. 

(v) If the control  intervals  i n  (i) above can be made a r b i t -  * 
r a r i l y  small, we speak of d i f f e ren t i a l  con t ro l l ab i l i t y  over those intervals .  

DEFINITION 5. Consider a system (2.1). Assume u ( t )  0. 

(i) The system i s  causal (C-) - observable [or ant icausal  

(A,-) observable] at  time to if the s t a t e  of the  system at  t a  to can 

be ident i f ied  from knowledE of the system's output over a f i n i t e  i n t e rva l  

[t, t o ]  (o r  [to, t l ) .  

(ii) A system which is  both Cdbservable and A-observable at 
to is b id i rec t iona l ly  [E-] observable at  to. 

L 

(iii) If the system i s  C- [or A- o r  B-1 observable a t  every 

t E 'z, it i s  completely - C- [or A- - o r  2-1 observable. 

( i v )  If the in te rva ls  of output observation mentioned in  (i) can 

be made a r b i t r a r i l y  small, w e  speak of d i f f e r e n t i a l  observabili ty over 

those in te rva ls  

Notes on the def in i t ion  of observability: 

1. Intui t ively,  there  appears t o  be a connection between 

d i f f e r e n t i a l  observabili ty at a point 

ident i fy  a state from a f i n i t e  number of der ivat ives  of t he  

output a t  to. In  a l a t e r  section, t h i s  i n t u i t i v e  connection 

is made expl ic i t .  

and the a b i l i t y  t o  

* 
D i f f e r e n t i a l  con t ro l l ab i l i t y  is  a concept introduced by IaSalle [TI, who 

cal led it "complete controllabil i ty".  Since then, it has become more 
common t o  use "complete control labi l i ty"  i n  the manner employed here. 



-10- 

2. The motivation f o r  the  appelatives of and 

'ranticausal" i n  the  de f in i t i on  of observabi l i ty  i s  as follows . 
I n  a system which i s  A-observable a t  the  ''present" instant ,  

one cannot i den t i fy  the  "present" state without knowledge of 

future inputs. It may seem that there  e x i s t  i den t i f i ca t ion  

procedures for "physical" systems which are based on our 
- 
anticausal" observabi l i ty  property [81. However, i n  such 

cases, t he  pr inciple  of causa l i ty  imposes a bui l t - in  delay 

i n t o  the  procedure so that i n  f a c t  it i s  not t he  "present" 

s t a t e  which can be ident i f ied,  but only a "past" state. 

11 

2.5. Contro l lab i l i ty  and Observability of t he  System (2.1). 

I n  t h i s  section, we give necessary and su f f i c i en t  conditions f o r  

t h e  system (2.1) t o  possess ce r t a in  c o n t r o l l a b i l i t y  and observabi l i ty  

propert ies .  We begin with 

THEOREM 1. The system (2.1) i s  C-controllable a t  to i f  and 

only if  there e x i s t s  

@(to, . ) G ( - )  
tl > t o  such t h a t  t h e  rows of t h e  matrix 

a r e  l i n e a r l y  independent functions over t he  in te rva l  [to, t l ] .  

- Proof. (Sufficiency):  If the rows of @(to, . ) G ( * )  are l i n e a r l y  

independent functions on [to, tl], the  matrix 

I, 
0 

where t h e  "prime" indicates  transpose, i s  posi t ive def in i te .  

t i n g  
Then, set- 

u ( t )  = - G ' ( t ) @ * ( t o ,  t )C" ( to ,  tl)xo 

i n  ( 2 . 3 ) ,  we obtain x(t,) = 0. 
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(Necessity): If there  is  no t > to  such that the  rows of 

@(to, * ) G ( * )  are l i n e a r l y  independent functions on [to, tl], then 

there  i s  a vector x i n  the s t a t e  space such that 1 

x;@(to, t ) G ( t )  E 0 f o r  a l l  t >to. 

From (2.3), 

= x'x 1 0. 

Clearly, the  component of x i n  the d i rec t ion  of x is  uncontrollable 

for t > to since the  term involving u is zero. But the  system was 
1 

assumed t o  be C-controllable at  to. Hence we ha-<e a contradiction. Q.E.D. 

THEOFZM 2. The system (2.1) 2 A_-controllable at  to if and 

such tha t  the  rows of the matrix 

are l i n e a r l y  independent functions on tk i n t e r v a l  

only i f  there  e x i s t s  

@(to, *)G( . )  
t-l < to 

[t-l, to]. 

- Proof. Same as f o r  Theorem 1 with tl replaced by t_l and ">" 
replaced by "<". 

THEORJ3M 3. The system (2.1) is C-observable a t  to i f  and onlx 

if  t he re  e x i s t s  

a r e  l i n e a r l y  independent functions over the  i n t e r v a l  
tml < t o  such that the columns of t he  matrix H(-  )a( *, to) 

[tml, to]. 

Proof. (Sufficiency) : Consider (2.1) w i t h  u(* ) = 0. Then, from 

(2.1) and (2.3),  

y ( t )  = H(t)x( t )  = H ( t ) @ ( t ,  t o ) X o =  
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Multiplying both sides by @*(t, t o ) H ' ( t )  and in tegra t ing  over 

Etml, t o ]  yields 

where 

(2.9) 

Clearly, xo is  identifiable from knowledge of y( ' )  over [tml, t o ]  

i f  D i s  nonsingular. The nonsingularity of D follows from (2.9) i f  

t he  columns of H ( * ) @ ( . ,  to) a r e  l i nea r ly  independent functions on 

(Necessity): If there  is  no t-l < to such that the  columns of 

H(.>Q(., t ) are l i n e a r l y  independent functions on [t-l, t o ] ,  then from 

(2.8), there  ex is t s  xo such that y ( t )  0 f o r  t I to. The system is 

then  not C-observable a t  to, and we have a contradiction. Q.E.D. 

0 

THEORF,M 4. The system (2.1) is  A-observable a t  t if and on ly  if 
0 

there  e x i s t s  tl > t such t h a t  t he  columns of the matrix H(-)@(-, to) are 
0 

l i n e a r l y  independent functions on [to, tl]. 

Proof. Same as f o r  Theorem 2 with t replaced by tl and "<" -1 - 
replaced by ''>Ir. 

A s  immediate consequences of Theorems 1, 2 and 3 ,  4 respectively,  

we have 



-13 - 
* 

COROLLARY 1. A system (2.1) is d i f f e r e n t i a l l y  control lable  

on an  i n t e r v a l  I i f  and only i f  the rows of the matrix @(to, * ) G ( * )  

a r e  l i n e a r l y  independent functions on every subinterval  of I. 

COROLIARY 2. A system (2.1) is d i f f e r e n t i a l l y  observable on 

a n  i n t e r v a l  I i f  a n d  only if the  columns of the m t r i x  H(*)@(*, to) 
ere l i n e e r l ~ r  icdepeEdeEt filnctions on every subinterval  of I. 

I n  turn, Corol lar ies  1, 2 give us (see C31) 

THEOREM 5. A system (2.1) i s  d i f f e r e n t i a l l y  control lable  on an  

i n t e r v a l  I if and only i f  the rows of tk matrix @(to, * ) G ( * )  are 
l i n e a r l y  independent functions over a subinterval  of 

t he re  e x i s t s  a vector linear d i f f e r e n t i a l  equation, defined on I and 

having no s inguLari t ies  on I, 

I and, i n  addition, 

- 
f o r  which the  rows of the matrix 

@(to, * ) G ( * )  are solutions.  

THEOREM 6. A system (2.1) - with u ( t )  E 0 i s  d i f f e r e n t i a l l x  

observable on an  i n t e r v a l  I i f  and only if the  columns of the matrix 

H ( * ) @ (  , to) are l i n e a r l y  independent over a subinterval  of I and i n  

addi t ion  there  e x i s t s  a vector l i nea r  dflferectial eqmt ion ,  defined on 

I and having no s i n g u b r i t i e s  on I, f o r  which the columns of the  

rnatrix H ( * ) @ ( * ,  t ) are solutions.  
0 

Proof of Theorem 5. (Sufficiency): L e t  G ' ( * ) @ ' ( t o ,  * )  be the  

transpose of @(to, . ) G ( - ) .  Suppose the  columns of (Ri) of G ' ( * ) @ * ( t o ,  = )  
are so lu t ions  of the d i f f e r e n t i a l  equation 

(a .  11) 
n 
C Ai(t)v(i) = 0 
i=l 

* 
This result was o r ig ina l ly  pruved by LaSalle [TI.  I n  h i s  terminology, 

a d i f f e r e n t i a l l y  control lable  system is  a "2roper" system. 



defined on I, where v i s  a p-vector, v (i) - - div and A i ( * )  i s  
ati’ 

a matrix of su i t ab ly  d i f fe ren t iab le  time functions with 

de t  A (t) # 0 vt E I. There w i l l  be n=p  l i n e a r l y  independent vector 

solut ions of (2.11) 

a l s o  be written as a s e t  of n-p  f i r s t -o rde r  vector equations whose 

solutions correspond t o  the  

set of equations i s  given by 

p x p 

n 
vl, ..., v It is easy t o  show t h a t  (2.ll) can ne p. 

(vi]. A fundamental matrix f o r  the  l a t t e r  

(2.12) . . . 

Now, a subset of t h e  (vi) spans the  l i n e a r  manifold defined by the  [Ri]. 

Suppose w e  replace vl, ..., v i n  (2.12) by R1, ..., R respectively,  

and examine the determinant associated with t h e  resu l t ing  solut ion matrix. 

By a well-known theorem [51 i f  the  determinant of a solut ion matrix of a 

s e t  of l i nea r  equations defined on an i n t e r v a l  I vanishes anywhere on I, 

it m u s t  vanish everywhere on I. Conversely, i f  t he  determinant i s  nonzero 

at one point i n  I, it m u s t  be nonzero f o r  a l l  points  i n  I. The former 

case implies that two columns of t h e  matrix (2.12) are l i n e a r l y  dependent 

over I. But the  [vi] were presumed l i n e a r l y  independent, and by hypo- 

thes i s ,  t h e  [R.) are l i n e a r l y  independent over t he  i n t e r v a l  I. There- 

fore, t he  determinant associated with (2.12) with R1, ..., Rn replacing 
vl, ..., v is nonzero f o r  a l l  t E I which implies that the  [Ri] are 
l i n e a r l y  independent functions over every subinterval  of I. Application 

of Corollary 1 completes t h i s  part of the proof. 

n n 

1 

n 
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(Necessity) : If the system (2.1) i s  d i f f e r e n t i a l l y  control lable  

on I, then by CorolLary 1 the (Ri) m u s t  be l i n e a r l y  independent on 

every subinterval  of I. By an easy extension of t h e  argument f o r  t h e  s c a l a r  

case, one has the  following result from t h e  theory of d i f f e r e n t i a l  equations 

[5]. Given a set of p-vectors vl(*), ..., v ( 0 )  which are l i n e a r l y  

independent functions on every subinterval of a given i n t e r v a l  

the determinant associated w i t h  (2.12) vanishes nowhere on I. 

(vi} s a t i s f y  a l i n e a r  homogeneous d i f f e r e n t i a l  equation, defined on I 

and w i t h  no s ingu la r i t i e s  on I, which i s  given impl i c i t l y  by 

n*P 
I, 
Then the  

so that 

de t 

0 . .  1 V 

. 

. . .  (PI v, I 

V V 
n.P 

. . . . . . 
= o  

where v i s  the  dependent variable (a p-vector). W e  now merely associate  

t he  (R. )  with n m e m b e r s  of the  (vi) and the  theorem is proved. Q.E.D. 1 

Theorem 6 i s  proved by s t r i c t  analogy. 

2.6. The Canonical Structure of a Linear Dyna mica1 System. 

It i s  known [SI, [lo],  that one can use the concepts of (C-) con- 

t r o l l a b i l i t y  and (C- )  o b s e r v a b i l i t y t o  form a d i r e c t  sum decomposition of 

t he  state space of a system (2.1). 

l i t y  and observabi l i ty  can be defined leads t o  a n  immediate extension of 

previous results [3]. we now give 

The f a c t  that two types of control labi-  
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THEOREM 7. (i) Consider a l i nea r  dynamical system (2.1). 

For a given ordering of the s e t  ‘-3, and at  every fixed ins tan t  t of 
time, there i s  a coordinate system i n  the  s t a t e  space r e l a t ive  t o  which 

tk components of the s t a t e  vector can be decomposed i n  any one of four  

ways i n t o  a d i r e c t  sum of four  parts 

d x = x  a f3 xb f3 xc (3 x , 

which correspond respectively t o  the  schemes I through I V  below. 

Part (a) : 
Part  (b)  : 

Part ( c )  : 

Part (d) : 

C-controllable but C-unobservable 

C-controllable and C-observable 

C-uncontrollable and C-unobservable 

C-uncontrollable but C-observable, 

I 

* Part (a) : 

Par t  (b)  : 

Part ( c )  : 

Part (d) : 

A-controllable but A-unobservable 

A-controllable and A-observable 

A-uncontrollable and A-unobservable 

A-uncontrollable but A-observable. 

Part (a) : 

Part (b) : 

Part (c)  : 

Part (d) : 

C-controllable but A-unobservable. 

A-controllable and C-observable 

A-uncontrollable and C-unobservable 

A-uncontrollable but C-observable. 

Part (a) : 

Par t  (b) : A-controllable and C-observable 

Part ( c )  : 

Part (d) : 

A-controllable but C-unobservable 

A-uncontrollable and C-unobservable 

A-uncontrollable but C-observable. 
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(ii) Relative t o  such a choice of coordinates, and for anx 

type of decomposition t h e  system matrices have the canonical form 

r 1 

G ( t )  = col(Ga(t), G b ( t ) ,  0, 0)  

H ( t )  =: (0, H b ( t ) ,  0, H d ( t ) ) .  

The development of the  statements contained i n  Theorem 7 follow i n  p a r a l l e l  

fashion the  development given i n  [11 i n  which only the  type I decomposition 

was discussed. Figure 2 gives a graphical picture  of t h e  canonical struc- 

ture f o r  a type I, 11, I11 or IV decomposition 

Let  na( t ) ,  n_b(t),  n (t), n,( t )  be the dimension numbers for c 
F r t s  a, b, c, d respect ively of a given type of decomposition for a system 

(2.1). The dimension, n, of the state space of (2.1) i s  then given by 

Although (2.13) holds f o r  any typt: of decomposition, i n  the  general  

time-varying case the dimension numbers (at any given value of t)  f o r  

one type of decomposition need not coincide with those of another type. 

It can be shown, however, that t h e  dimension numbers f o r  all of the  above 

decompositions are constants i f  (2.1) is periodic o r  ana ly t ic .  



To i l l u s t r a t e  t he  significance of a dimension number being con- 

s t an t ,  suppose n a ( t )  

of (2.1). 

of (2.1)0 

A-controllable but A-unobservable f o r  all. t. 

i s  constant f o r  a given type of decomposition 

Then pa r t  (a) of the associated decomposition i s  a subsystem 

If  the decomposition is  of type 11, then t h i s  subsystem is 

I n  a la te r  section, w e  shall invest igate  the  conditions under 

which the "b" part  of a given decomposition has constant dimension. 

problem i s  connected with the study of the relat ionship between s t a t e -  

var iable  and input -output system representations. 

This 

J. Svstem Representation bv Input-output Relations 

u t h  e T i  . me -Domain - The We inht, irg Pattern. 

I n  this sec t  ion we explore one type of input -output representation 

of l i n e a r  systems. Specif ical ly ,  we shaLi r e l a t e  ce r t a in  propert ies  of 

t he  l a t t e r  t o  propert ies  n o m l l y  associated with the i n t e r n a l  s t ruc ture  

of a system. 

3.1. Defini t ion of Weighting Pattern. 

DEFINITION 6. The weighting patternt W ( t ,  7 )  f o r  the  dynamical 

system (2.1) i s  defined by t h e  r e l a t ion  

t 
(3.1) y ( t )  - H ( t ) @ ( t ,  t o ) X o  = -f W ( t ,  T)U(T)dT. 

T h a t  is, knowing the  s t a t e  of a C-system [or A - s y s t e m ]  a t  any value 

[t-l, t o ] ]  enables one t o  e s t ab l i sh  by means of t h e  
to 
t e r v a l  

weighting pattern, t he  output of t he  system a t  t i m e  tl [or tW1]. From 

(3.1),(2.6),and(2.4) we have, i n  view of t he  uniqueness of solut ions of the  

d i f f e r e n t i a l  equation (2.1), 

of time, as w e l l  as the  input over an i n t e r v a l  [to, tl] [or t he  in-  

(r x p matrix) 

This temlinology is  due t o  Prof. W. H. Huggins. Unless otherwise speci-  
f ied ,  t h e  term "weighting pattern" implies "weighting pa t t e rn  matrix". 
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If the  i n i t i a l  s t a t e  i s  - 0 (3.1) becomes 

( 3 . 3 )  
t 

t 
y ( t )  = J W ( t ,  7)u(7)d7. 

0 

Hence, f o r  zero i n i t i a l  conditiors, the  weighting pa t te rn  contains a l l  
the information needed t o  completely describe the  input-output r e l a t ion  

of the  system (2.1). 

Since (2.1) can represent e i the r  a C-system of an A-system, it 
i s  c l e a r  that the weighting pattern m u s t  a l so  be independent of the order- 

ing of  7. 
As i s  w e l l  known, one can formally iden t i fy  the  ith column of 

W ( t ,  2 )  (Le . ,  W i ( t ,  7)) as the "output" of the system (2.1) at time 

t a l l  of whose components are zero except 

the ith which is a u n i t  impulse applied a t  time 

t - h e  T the  s t a t e  of the s p t e m  i s  the migiz) .  %e f o m l  derimtiozl of 

t h i s  result is as follows. I n  (2.6) l e t  xo = 0 and 

corresponding t o  an  "input" 

7 (assuming that a t  
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Then 

(3.4) 

where Gi is the ith column of G. 

of t h e  6-function, 

By t h e  w e l l  known "s i f t ing"  property 

= W i ( t ,  T). 

The weighting pa t te rn  (matrix) is  therefore  of ten  re fer red  t o  as 
t t he  impulse response (matrix) of the system. 

3.2. Causal and Ant icausa l  Impulse Responses. 

A causal system can be described by s t a t i n g  that there  i s  
no response p r i o r  t o  a n  excitation. 

the impulse response function vanish f o r  T > t. I n  l i k e  manner the  i m -  

pulse response function f o r  an  an t icausa l  system m u s t  vanish f o r  T < t. 
W e  now give t h e  following def ini t ions.  

T h i s  leads t o  the requirement t h a t  

DEFINITION 7. The causal impulse_ response (C_-impulse response) 

of the dynamical system (2.1) is given by 

wc( t ,  T) = W ( t ,  T) if  t 2 T, 

= o  if t < T .  
( 3 3  

I f  From now on, t h e  word "matrix" will be understood when impulse responses" 
a r e  discussed. 
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DEFINITION 8. The ant icausal  (A-) - impulse response of the  d p -  

mica1 system (2.1) i s  given by 

( 3 . 6 )  

0 , if t >T. 

-w(t,  T j ,  if  t s T. 
') = 

I n  view of def in i t ion  7, f o r  a causal system w e  can always write 

(3.1) i n  t h e  form 

For ce r t a in  purposes (see [ll]), it is  convenient t o  write the  

r igh t  hand s ide of (3.7) as a single i n t e g m l  

(3.8) 

I n  order  t o  do this, w e  m u s t  have 

(3 .9)  

for a suitable de f in i t i on  of the f'unction u(*)  on ( - O D ,  to). It follows 

t h a t  we can always do t h i s  as long as the  dimension number 

type I11 canonical decomposition i s  zero f o r  a l l  t. 
SimilarLy, f o r  an an t icausa l  system, we can always write 

n,(t) 
(See Theorem 21.) 

f o r  a 

as long as the  dimension number 

t i o n  i s  zero f o r  all t. 
n d ( t )  f o r  a type 11 canonical decomposi- 



3.3. Weighting Patterns and Realizations. 

Suppose we are given a matrix function of two var iables  

we regard t h i s  function as a weighting pa t te rn  W, o r  impulse response 

Wc or WA. I n  order t o  r e l a t e  such an abs t r ac t ly  given weighting pa t t e rn  

t o  a dynamical system, we introduce 

t, T and 

DEFINITION 9. A dynamical system (2.1) is a l o c a l  r ea l i za t ion  of 

W [or  Wc o r  WA] on an  i n t e r v a l  I whenever (3.2) [or (3.2 and 3.3)  
or (3.2) and 3.6)1 holds on 

a l l  I, the rea l iza t ion  is @obal. 
I. If t he  aforementioned r e l a t ion  holds f o r  

The term "real izat ion" is  motivated by t h e  f a c t  t h a t  it i s  possible 

t o  build r e a l  (physical) systems (analog computers, etc.)  which obey (2.1) 

t o  any desired degree of accuracy. 

We now give the  fol lowing result which is s t a t ed  for global  rea l iza-  

t i o n s  but which has an obvious counterpart f o r  local real izat ions.  

THEOREM8. A function of two variables,  W, is a weighting pa t t e r n  

rea l izable  by means o f  a dynamical system (2.1) if and only  i f  there  exist 

two  matrix functions of t i m e  Y ( * )  and - @ ( e )  defined over < t < 
such ti&& f o r  ~1.11 t, 7 we have 

- Proof. If condition (3.10) holds, then the  system defined by 

(3.11) F ( t )  E 0, G ( t )  = @(t), H ( t )  = Y ( t )  

is  a rea l iza t ion  of W. On the  other  hand, the condition is su re ly  neces- 

sa ry  since from (3.2) we have, f o r  any fixed 



so that we may s e t  

@(t) = @(to, t j G ( t j .  Q.E.D. 

Suppose now that !I!(*) and @ ( e )  are  functions as i n  Theorem 8 
and consider the C-impulse response def imd by 

Then Theorem 8 shows that the function 

Z ( t ,  7 )  = 0, t > T  

= 'Y(t )@(T) ,  t d T 

is  ident ica l  with the A-impulse response associated with the realization 

(3.11). 
(2.1), then the real izat ion (3.14) is an immediate consequence of Theorem 8 
and relat ion (3.3). 

Moreover, i f  Wc i s  tk C-impulse response of a dynamical s y s t e m  

Thus, w e  have 

COR0I;LCLRY TO THEOREM 8. A, C-impulse response i s  realizable by 

means of a dynamical system (2.1) if and only if relat ion (3.14) holds. 

An analogous result holds f o r  the A-impulse response. 
- 

- 
NOW consider 
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DEFIMTION 10. The weighting pa t t e r n  W i n  (3.10) is i n  reduced 

- form if t h e  columns of Y(*) and the rows of @ ( a )  a r e  both l i n e a r l y  

independent sets  of functions on the  r e a l  l i ne .  0th-rwise W is reducibl 

DEFINITION U. If W i n  (3.10) is  i n  reduced form, the  number 

of columns of Y (= number of rows of e) is  ca l led  the - order of W. 

DEFINITION 12. A global r ea l i za t ion  (2.1) of W i n  (3.10) is i n  

reduced form if the  dimnsion of the  s t a t e  space is  the  same as the  order 

of w. 
We now have 

THEOFEM 9. A reduced form rea l iza t ion  (2.1) of a given E i g h t i n g  

pa t t e rn  ( 3 .  IO) always ex is t s .  

- Proof. If W i n  (3.10) i s  i n  reduced form, then the r ea l i za t ion  

obviously has a s t a t e  space dimnsion equal t o  the number of  rows of 

Hence t o  prove t h e  theorem, we need t o  show t h a t  any weighing pa t t e rn  can 
0. 

be put  i n t o  reduced form. 

ing  pa t t e rn  

To 

i n  which a ( * )  is r x (n+q) 

@ ( e )  i s  n. Without loss of 

. 

do this, consider a n  1: x p reducible weight- 

4 = d t ) P ( T )  

p( * )  is (niq) x p and the  row rank of 

generali ty,  assume the  f irst  q rows of 

@ t o  be l inear ly  dependent on the remaining n rows. Then, by perform- 

ing  elementary row operations on B 
whose inser t ion i n t o  the expression (3.15) allows the  l a t t e r  t o  be wr i t t en  as 

[=] one can construct  a transformation 



where the  first q rows of 5, namely { $ , I r  are 0. - 
t h a t  t he  f i r s t  q columns 

p a r t i t i o n  a: and in to  [(Sq] /A]  and [ *] respectively,  then 

[I. Awl G a l l  Lk i i i i t t en  as 

It then follows 

{Gq] of 6 a r e  superfluous, and if we 
h î B I 

I 2  .L\ -..- 

(3.17) W ( t ,  7 )  = A ( t ) B ( T ) .  

If the  columns of A ( * )  

(3.17) is i n  reduced form. 

A ( * )  is  s < n, w e  can perform elementary column operations on A(.)  

and from t h i s  construct a l i n e a r  transformation which would enable us t o  

write (3.17) i n  the  form 

a r e  l inear ly  independent on the r e a l  l i ne ,  then 

If, on the other hand, t h e  column rank of 

W ( t ,  7 )  = ii(t)^B(t) 

h 

where n-s columns of A ( * )  are 0 - thus rendering n-s rows of % ( a )  

superfluous. 

argument, we f i n a l l y  end up with 

By s t r i c t  analogy with t h e  the  previous "par t i t ioning" 

W ( t ,  7 )  = Y ( t ) O ( T )  

where the  s columns of Y ( * )  and s rows of @ ( e )  am l i n e a r l y  inde- 

pendent functions on the real line. Q.E.D. 

THEOREM 10. (i) A global reduced-form rea l i za t ion  (2.1) of a 
Gven  reduced-form weighting pa t t e r n  (3.10) has the lowest dimnsion of 

aU global  real izat ions,  a& (ii) conversely, a l l  minimum-dimension real iza-  
t i o n s  (2.1) of a reduced-form weighting pa t te rn  (3.10) a r e  i n  reduced form. 
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- Proof. (i) Bt n be the  order of t he  weighting pa t t e rn  and 

assume there ex i s t s  a rea l iza t ion  (2.1) whose s t a t e  space is  of lower 
dimension than n. Then t h e  number of rows @(to, * ) G ( * )  m u s t  be less 

than n and hence the  order of t h e  reduced form weighting pa t t e rn  f o r  

t h i s  system is a l s o  less than n, which i s  a contradiction. 

(ii) Suppose there  i s  a minimum-dimension r ea l i za t ion  which i s  

not i n  reduced form. Upon reduction, i t s  dimension m u s t  be less than n, 

which contradicts the  minimality of n. Q.E.D. 

3 .  Uniqueness of the  Realization. 

A rea l iza t ion  of W, even i f  i n  reduced form, is  never unique 

f o r  t h e  following reason. 

system, the s t a t e  is  always an  abs t r ac t  qmnt i ty .  

a given se t  of state var iables  by another equivalent s e t  m u s t  c l ea r ly  

not a f f e c t  input-output re la t ions.  It is  easy t o  ver i fy  t h i s  general  

f a c t  i n  the present case. 

According t o  the  axiomatic de f in i t i on  of a 

Therefore replacing 

Let T ( t ) ,  -a, < t < m, be a family of nonsingular l i n e a r  trans- 

formations such that the  function T ( * )  is continuously different iable .  

Then we can set up a diffeomorphism (i.e., a 
correspondence) between - 7 x  C and "2.' x ^c by writ ing 

1 x 1 bidi f fe ren t iab le  
A 

Then t h e  matrices 

t ive  l y  by 
F ( t ) ,  G ( t ) ,  H ( t )  i n  (2.1) are t o  be replaced respec- 

?(t) = ?(t)T''(t) + T(t)F(t)T ' l ( t )  

c(t)  = T ( t ) G ( t )  

H ( t )  = T - l ( t ) H ( t ) .  
h 
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A @(t, T )  = T ( t ) @ ( t ,  T ) T ' ~ ( T ) .  

If W i s  the  weighting pattern associated with ?, 2, 9, then 

Thus i n  any case a rea l iza t ion  of W is  unique only up t o  a diffeomorphism 

(3.13). 
of a given weighting pa t te rn  

I n  f ac t ,  it can be shown that  any t w o  reduced f o r m  rea l iza t ions  

be related by such a diffeomorphism [l3]. 

3.7. Weighting Patterns End the Concepts of Cont ro l lab i l i ty  and __ __I_ - - ___ - - - ._ . 

Observabilitx. 

I n  t h i s  section, we explore the con t ro l l ab i l i t y  and observabi l i ty  

propert ies  of global  reduced-form real izat ions of weighting pat terns .  The 

r e s u l t s  obtained will allow us t o  obtain a spec i f i c  l i n k  between the weight- 

i n g  pa t t e rn  of a system and the system's canonical s t ructure .  

purpose, it w i l l  be convenient t o  l i s t  ce r t a in  appropriate propert ies  of 
weighting pat terns  and r e h t e  these properties t o  the  concepts of control l -  

a b i l i t y  and observabili ty.  

For t h i s  

W e  assume first, without loss of generali ty,  that i n  a l l  weighting 

pa t te rns  (3.lO), the  columns of Y ( . )  and rows of O ( * )  are l inea r ly  in-  

dependent functions on the  e n t i r e  rea l  l i n e  (i.e., t he  weighting pat terns  

are i n  reduced form when the  en t i r e  t, 7 plane i s  considered). Now con- 

s i d e r  t he  following possible properties of these veighting patterns.  
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- P1. The rows of @(') are l inear ly  independent functions on every in- 

t e r v a l  of the r e a l  l ine.  

- P2. Same as P1 with "rows of 0" replaced by "columns of Y".  

PJ. The rows of O ( * )  are. l inear ly  independent functions on every semi- 

i n f i n i t e  interval with so0 as end point. 

L P4. Same as P3 with "rows of 0" replaced by llcolumns of Y". 

a. Same as P3 with "t03" replaced by "4". 

~6 . " 'I P4 'I 
I1 I1 11 11 . - 

g. (a) There exis ts  an isolated, m i n i m u m  length f i n i t e  in te rva l  

I = [a, b], the closest  such in te rva l  t o  t03, such that the rows of @ ( e )  

a re  l inear ly  independent functions over it. 

3. (b) Same as V(a) except I is  an €-interval (b-, b]. 

- ~8. -7 a b -* Same as P'j' a, b respectively except "SCO'' is  replaced by 
11-11 

9. (E) There ex is t s  an isolated, minimum length f i n i t e  in te rva l  I 

I = [c, d], the closest  such interval  t o  $00, such that the columns of 

Y ( - )  

+ and "(b-, b]" is  replaced by "[a, a )I1. 

are  l inearly independent functions over it. 

9. (b)  Same as Pg(a) except I is an €- interval  (d-, d]. 

7 P.10. 5 E. Same as ma, b respectively except "tm" is  replaced by 
+ and "(d-, d]" is  replaced by "[e, c ) I r .  

Applications of Theorems 1-6 t o  P1-PlO yields the following s t a t e -  

ments i n  the form of a theorem about the reduced form realizations of the 

associated weighting patterns. 

THEOREM ll. Given a weighting pattern (3.10) and a corresponding 

reduced-form realization (3.1) . Then - 
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(5) P1 e=> the  system is d i f f e r e n t i a l l y  c o n t r o l h b l e  b t 
11 

(ii) ~2 e=> If '' d i f f e r e n t i a l l y  observable !%" t 
11 

(iii) ~3 e=> '' C-c  ontrol lable  1' t 
f f  '' A -obse rvable \- t ( iv )  ~4 e=> '' 
11 (v) P5 -e=> 'I A-controllable \tit. v 

11 
(v i )  ~6 e=> It  C-observable k't 

I1  ( v i i ) ( a )  u(a) => If C-c ontrol lable  'i;t S a  

(e= if ,  i n  addition, the  system is  not C-controllable 

f o r  any t > a )  

( v i i ) ( b )  Same as ( v i i )  (a) except 

'!t > b". 

'' vt 4 aft+ '"\;rt; < b", and * "t > a'' + 

( v i i i ) ( a )  ~ 8 ( a )  ==> the  system i s  A-controllable 2 b 

(e= if ,  i n  addition, the system is  not A-controllable 

f o r  any t < b) 

( v i i i )  (b) Same as (v i i i )  (a) except t;' t 2 b"+ 'h/t > aft, and 
'9. < bff+ 'k < EL". 

(ix) (a) m(a; ==> t he  system is A-obserable L/ t S c 
(e= if ,  i n  addition, the system is  not A-obsemable 

f o r  any t > c )  

( i x ) ( b )  Sam as (&)(a) except "\dt 5 cff<'vt  < d", and "t > cf r  
+ "t > dft. 

(x)(a) PlO(a) ==> the  system is C-observable bt 2 d 

(e= 
f o r  any t < d)  

i f ,  i n  addition, the system i s  not C-observable 

(x) (b) Same as (x)(a) except '' b't Z dl'+ "vt > c" ,  and 

"t < d" --f "t < c". 

* 
The arrow 4 '' denotes tk  phrase I f i s  replaced by". 
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Now consider 

THEOREM 12. Given a system (2.1) w i t h  a canonical decomposi- 

i f  

the dimension of the simultaneously control lable  and observable pa r t  

of the  decanposition i s  constant (so that  t h i s  pa r t  i s  a subsystem), 

t h e  w e i a t i n g  pa t t e r n  of the system, W ( t ,  z), is given by 

t i o n  - (2.14) of type I, 11, 111, IV. Then,for any chosen type, c 

b bb b (3.19) W ( t ,  7 )  = H (t)Q (t, T ) G  (T) 

bb where abb is the t r ans i t i on  matrix corresponding t o  F . Moreover, 

t t  "b" part, of the  given canonical decomposition i s  a reduced form 

rea l iza t ion  of the weighting pa t t e r n .  

- Proof. The f i r s t  pa r t  of the theorem follows f r o m  formula (3.12) 
with subs t i tu t ion  of (2.14). 
assume t h a t  the "b" part of the appropriate type canonical decomposition 

is not a reduced form rea l iza t ion  of the  system's weighting pat tern.  I n  

that caseO if n is the order of W, the rea l iza t ion  of part (b) m u s t  be of 

higher dimension than n, 

H (*)Qb5(*, to) or the  rows of (3 (to, * ) G b ( * )  a r e  l i n e a r l y  dependent 

functions on the real l ine.  But from Theorems 1-4, t h i s  means that the  

rea l iza t ion  cannot be simultaneously control lable  a d  observable (using 

the  appropriate def ini t ions corresponding t o  the  given type of decomposition) 
which i s  a contradiction. Q.E.D. 

To prove the  second part of the theorem, 

- 
which means that e i the r  the  columns of 

b bb 

We now ask two questions: 

(i) What properties of a weighting pa t te rn  imply t h a t  a given 

rea l iza t ion  can have a canonical decomposition of a specif ied type i n  

which the simultaneously control lable  and observable part has constant 

dimension? 
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(ii) Conversely, i f  we know tha t  one o r  more specified type 

canonical decompositions of a given system have a "b" part which is  

of constant dimension, w h a t  does this imply about the  weighting pattern? 

An answer t o  these questions is  provided by table  I and the 

canment which follows it. !The right hand column gives the possible sets 
of the d i f fe ren t  types of canonical deccmpositions of a system i n  which 

the dimension of the simultaneously controllable and observable part i s  
constant. The l e f t  hand column plus the comment below Table I indicate 

the  corresponding properties of the weighting pattern. 

WEIGIBTNG PATTERW 

PROFEXTIES 

TYPE OF DECOMPOSITION 

FOR WHICH rj, IS CONSTAWT 

I, 11, 111, Iv 
11, I11 

I, I V  

I, I11 

11, rv 
I11 

I 

I1 

N 

Completion of table  I i s  accomplished by noting that the right 

hand column is  unchanged i f ,  i n  the  l e f t  hand column, we  mke the substi-  

t u t  ions 

P2 + P4 + P6. 
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From Theorem I 2  and table I we obtain (see [3]) 

COROLURY t o  THEOREM 12. A reduced-form real izat ion of a we igh t -  
ing pattern having one o r  more of the s e t s  of properties l i s t e d  i n  

table  - I m u s t  have one o r  more of the properties below. 

(i) Complete C-controllability and complete Cdbservabi l i ty  

(ii) 

( iii) 

complete A-controllability and complete A-observability 

complete C-cont ro lhbi l i ty  and complete A-observability 

( iv)  complete A-controllability and complete C-observability. 

3.6. 

In  the previous section, we discussed the  relationship of the 

The Role of C and A Impulse Responses. 

weighting pattern of a system t o  t b e  canonical decompositions of the system. 

Similar (though more res t r ic ted)  results can be obtained i n  t e r n  of the 

C and A impulse responses of the system. 

Theorem ll, is  given by 

An important result, implied by 

THEOREM13. Consider a reduced-form weight ing  pa t t e r n  (3.10), 

and a corresponding reduced-form realization (2.1). 

(i) The intersection of the intervals  (2 2 ) of C-controll- 

a b i l i t y  and s - o b s e m b i l i t y  of (2.1) can be determined from the A-Smpulse I 

response of the system. 

(ii) The intersection of the intervals  (2 “Z) of b e o n t r o l l -  
a b i l i t y  and A-observability of (2.1) can be determined from the  C-impulse 

response of the system. 
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Proof. (i) If the intersect ion i n  (i) above i s  not empty, - 
Theorem 13 implies that f o r  every t - in te rva l  

of Y ( = )  i n  (3.10) a r e  l inear ly  independent functions, tkre exis ts  a 
7-interval IT, such that 7 >t ,  y7 E IT, )/t E It, on which t h e  

O ( * )  a r e  l i n e a r l y  independent functions. 

then follows from the  f a c t  that the A-impulse response 

t i a l l y  coincides with the weighting pa t te rn  W ( t ,  7 )  f o r  t I; 7. 

It on which the columns 

The first part of the theorem 

essen- W A ( t ,  7 )  

(ii) Same as above with Y and 0 interchanged, t and 7 

interchanged, and A-impulse response replaced by C-impulse response. Q.E.D. 

I n  general, the C- (A-) impulse response yields no information 

about in te rva ls  of simultaneous C- (A-) c o n t r o l l a b i l i t y  and C- (A-) 

observability. I n  s p e c i a l  cases, however, complete information i s  obtain- 

able. 

type I and type 11 canonical decomposition of a system are i d e n t i c a l  (so 

t h a t  all f o u r  decompositions have ident ical  "b" parts), then Theorem 12 

can be s t a t e d  i n  terms of C- or A-impulse responses as w e l l  as i n  terms 

of the weighting pattern.  

si,at;eci by iCaimn [ij, is], iiriKing {c-) impulse responses t o  t n e  "b" 

prt of a (type I) canonical decomposition i s  tha t  t h i s  "b" part i s  a l s o  

defined by a type I1 decomposition of the system (see [ 3 ] ) .  

It i s  clear,  f o r  example, t h a t  i f  tk respective "b" parts of a 

Hence, an e s s e n t i a l  hypothesis f o r  t he  result 

To i l l u s t r a t e  the above statements, consider the one -dimensional 

system 
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Suppose g(.) and h ( * )  are defined as in Figure 3;  i.e., they are 

uni ty  over one semi-infinite interval ,  zero over another, and make a 

smooth t rans i t ion  between the levels  o and 1. I n  addi t ion t h e i r  

supports a re  d i s jo in t .  

The reader can easily v e r i f y  the following f ac t s .  

(i) The system (3.18) i s  completely C-controllable and 

completely C-observable . 
( ii) The system is nowhere simultaneously A-controllable 

and A-observable. 

(iii) The C-impulse response of (3.18) i s  ident ica l ly  - zero. 

( iv )  The A-impulse response W (t, T )  is  non-zero if t < 0 
A 

and 7 > 0. 

If the roles played by the functions g ( * )  and h ( * )  are re- 

versed i n  (3.18), t he  above statements hold with "C" and "A" interchanged 

and "t" and "7" interchanged. 

4. lA.a.& i n t  and D u a l  Systems. - 

Theorem 1-6 give ample evidence of the existence of  a "duality 

between the concepts of c o n t r o l l a b i l i t y  and observabili ty.  The purpose 

of this section is  t o  give precise meaning t o  the preceding statement. 

I n  order t o  do so, we define and discuss the concepts of ad jo in t  and 

dual systems. 
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4.1. Definit ion of Adjoint Systems. 

We give the  def in i t ion  indicated i n  t h e  t i t l e  and relate it t o  

the  c l a s s i c a l  concept of the  adjoint of a l i n e a r  d i f f e r e n t i a l  operator. 

DEFINITION 13. kt S be a reduced-form l i n e a r  d i f f e r e n t i a l  

s y s t e m  (2.1) with weighting pat tern 

S*, with associated weighting pat tern W*(t, T), i s  defined by the  

following propert ies  . 
W ( t ,  T). Then t h e  ad jo in t  system 

(i) The systems S and S* have the  same time set with 

the  same ordering. 

(ti) The product of  t h e  transposed t r a n s i t i o n  matrix f o r  S 

with the t r a n s i t i o n  mtrix f o r  S* is the ident i ty .  

(iii) W*(t ,  T )  = - w ~ ( T ,  t)  

where the "prime" denotes transpose. 

DEFINITION 14. Two systems S and S* a re  input-output ad jo in ts  

cf each other  i f  p r o p ~ ~ e s  (i) and (iii) of h f i n i t i o n  13 b ~ ~ d .  

4.2. 

Consider the  homogeneous n-dimensional vector different ia l .  equa- 

Relation t o  Classical Ad  joint .  

t i o n s  

(4.1) 

(4.2 1 d;; - = - F'(t);. at  

It i s  readi ly  demonstrated [3] that the product O f  R fUldamentalmatrix 

so lu t ion  of (4.1) with the transpose of t h a t  f o r  (4.2) is a constant matrix. 
I n  f a c t ,  if @(t, 2 )  

t i o n  matrix for (4.2) 1s 

and (4.2) as being ad jo in t  equations E?]. 

is tk t rans i t i on  matrix f o r  (4.1), then the transi- 
@'-'(t, 7 ) .  This  e s sen t i a l ly  defines (4.1) 



Now suppose we add t o  (4.1.) and (4.2) t he  respective r-dimensional 
vector  equations 

and proceed t o  eliminate the s t a t e  variables i n  each case so tha t  w e  

a r e  l e f t  with homogeneous nth-order vector d i f f e r e n t i a l  equations i n  

y and ^y respectively, as below 

Then the operators L and L* must be f o r m 1  adjo in ts  of each other, 

L e . ,  i f  

di n 
LC.1 = X A i ( t )  - ( - 1  

i = O  dt i  

where the  (Ai] a r e  r x r matrices, then 

i di n 
L*(.) = (-1) - (Ai(t).].  

i = O  dti  

The equations (k3, 6 )  are a l s o  cal led adjoint  equations. 

The ad jo in t  equation t o  (4.5) arises na tura l ly  from another point 

of view, namely, i n  the search f o r  (vector) integrat ing fac tors  f o r  

(4.5). 
grating fac tor  f o r  (4.5) and t h i s  f a c t  provides the  basis f o r  t he  

T h a t  is, every solution of the ad jo in t  equation (4.6) i s  an in t e -  
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(vector forms of the) Lagrange ident i ty  and Green's formula (see 

bI) 
To connect the  c l a s s i c a l  theory to Defini t ion 13 we point out 

the simple f a c t  that i n  the  case of  zero inputJ the system, S and - S* 

i n  D-efinition 13 are adjo in t  i n  the classical sense. 

The xeed fer Defini+,icr, 14  i s  shnw- by t h e  foUow5nz* 

two systems S1, S2 whose respective input-output r e l a t ions  can be 

described by vector d i f f e r e n t i a l  equations of the  form 

Consirkr 

I I  I 

whe re 

dim y1 = d i m  y2 

2 dim u1 = d i m  u 

and L1 i s  the formal ad jo in t  of L2. If the t i m e  sca le  f o r  S1 and 

S2 is the same, then it i s  readily sham. t h a t  S and S are input- 

output ad jo in ts  according t o  Definit ion 14. A l s o ,  if' u1 = u = 0, 

then (4.7, 8) are adjo in t  equations. 

of rea l iza t ions  of input-output re la t ions (see sec t ion  3.4), t he  systems 

S1 and S2 may not be ad jo in t  with respect t o  the i r  state variables.  

Hence, Defini t ion 14 +> Defini t ion 13. 

1 2 

2 
However, because of t he  nonuniqueness 

4.3. Definit ion of D u a l  Systems. 

DEFINITION 15. L e t  S be a system as i n  Defini t ion 13. The dual - 
N 

system S, with associated w e i g h t i n g  pa t te rn  $(t, T), i s  defined by 

the following properties. 
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(i) The time s e t s  of S and s" a re  the same but are 

oppositely o rde red. 

(ii) If we reverse the time ordering i n  s" and take the pro- 

duct of the transposed t r ans i t i on  matrix of the resu l t ing  system with 

the t rans i t ion  matrix of S, we obtain the  ident i ty .  

(iii) $(t, T )  = w ~ ( T ,  t)  

where the  "prime" denotes transpose. 

DEFINITION 16. Two systems S and s" are input-output duals 

of each other i f  properties (i) and (iii) of Defini t ion 15 hold. 

4.4. Di f fe ren t ia l  Equation Representation of Adjoint and Dual 
Systems. 

We exp l i c i t l y  show i n  t h i s  sect ion that the dual of a given 

system i s  obtained from the adjoint  by reversing the direct ion of time flow i n  

the l a t t e r .  

THEOREM 14. Consider a reduced-form system S given by 

(2.1). Then the ad jo in t  system S* i s  given by 

(4.9 1 

where is the - 
output. 

Proof. ( - 
l e t  $(t, T )  be 

r e a l  systems 

dt dsz. = - F'(t); T H ' ( t ) ^ u ( t )  

+ ;(t) = - G ' ( t ) z ( t )  

(r-dimensional) - input and y i s  t h e  (pdimensional)  

) Let @(t, 7 )  be the  t r ans  t i o n  matrix f o r  (2.1); 

likewise f o r  (4.9). Then, since (2.1) and (4.9) are 

A 

@(t, T) = @+t, 7 )  



-39 - 
and therefore  @'(t, 7)8(t, 7 )  = I. 

(ii) The weighting pattern of (2.1) is given by 

W ( t ,  7 )  = E ( t ) @ ( t ,  7 ) G ( T ) .  

$(t, 7 )  = - G ' ( t ) % ( t ,  T )H*( -C) .  

h 

Equation (4.9) is a rea l iza t ion  of W and since (i) spec i f ies  the t r a n s i -  

t i o n  matrix, the rea l iza t ion  i s  unique modulo a s ign combination f o r  u 

and y as shown. Q.E.D. 

THEOREM 15. - kt S be a system as i n  Defini t ion 13. Then the 

dual system is given by 

(4.10) 
- -  dz - P'(s)z + H'(s)G(s) 
ds 

: ( s )  = G ' ( s ) ~ ( s ) .  

Proof. We need merely see whether D.efinition 15 i s  sa t i s f i ed .  - 
(i) The time s e t s  of S and are oppositely ordered by 

hy-pothes is. 

(ii) If we replace s by t and ckange t h e  sign of t he  de r i -  

vat ive i n  (4.10), the r e su l t  i s  e s sen t i a l ly  (4.9). Theorem 14 implies 

that the product of the transposed t r ans i t i on  matrix of (4.9) with the  

t r a n s i t i o n  matrix of (2.1) is  the iden t i ty  matrix. 

(iii) I f  @(e, O )  i s  the t r ans i t i on  matrix function of (2.1), 

then a'(*, .) i s  the t r ans i t i on  matrix function of (4.10). The weighting 

pa t t e rn  w" f o r  (4.10) is  then given by 
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(4.11) G(s, 7 )  = G ' ( s ) @ * ( s ,  T ) H ' ( T ) .  

From (3.2) we see t h a t  

W ( t ,  7 )  = G q 7 ,  t). 
Q.E.D. 

The proof of Theorem 15 provides the following 

COROLIARY. The dual of a given system (2.1) is the adjoint  

system w i t h  the  time scale ordered i n  the opposite sense. 

4.5. Dual Systems and Concepts of Control labi l i ty  and Observa- 

b i l i t y .  

Our objective as s ta ted  at  the beginning of sect ion 4 is met by 

presenting the following theorems. 

THEOREM 16. 
If the system (2.1) - is  C h ]  controllable ( o r  - C h ]  observable) at 
then the adjoint  system (4.9) - is A[C] observable (OrA[C] control l -  

Consider a system (2.1), with i t s  associated adjoint  

(4.9). 
t = t 

able)  & t = t . 0' 

0 

Proof. The analogies involved a re  such t h a t  it i s  only necessary 
7 

t o  prove that C-controllability of (2.1) e=> A-observability of (4.9). 

If tk system (2.1) is  C-controllable at t = t then by Theorem 1 
0' 

tkre exis ts  tl >to such that the columns of the  matrix G * ( * ) @ ' ( t o ,  .) 

are l inear ly  idependent  functions over the in t e rva l  

implies A-observability of (4.9) a t  

l i t y  of the argument. Q.E.D. 

[to, t l ] .  
The converse holds by reversibi-  

But t h i s  

to. 
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THEOREM 17. Consider a system (2.1), with i ts  associated dual 

If the system (2.1) - is C b ]  control lable  (or - C b ]  observable) 

0, 

(4.10). 
t = t then the  dual  system (4.9) i s  C b ]  observable (or C [ A ]  - - 

control lable)  at  - s = - 

Proof. Follows from Theorem 16 plus the coro l la ry  t o  Theorem 15. - 

5. Time-Domain 1nput-Outpu-t Relations - The - 
Input -Output D if f e re n t  ia 1 E quat i on. 

In  sect ion 3 we discussed the ro le  of the  weighting pat tern i n  

the input-output representation of l inear  systems. I n  ce r t a in  s i t ua -  

t i ons  t h e  natural spec i f ica t ion  of the input-output charac te r i s t ics  of 

a system is  v i a  a d i f f e r e n t i a l  equation. 

the  re la t ionship  of input-output d i f f e r e n t i a l  equations t o  o t k r  modes 

of system representat  ion-. 

In  t h i s  sect ion we discuss 

5.1. Existence and Form. 

THEOREM 18. Consider a system (2.1). For a class of inputs U 

*ose components as s u f f i c i e n t l y  smooth, (2.1) implies t he  existence of 

a d i f f e r e n t i a l  equation r e l a t ing  output y t o  input u E U of the form 

(5.1) Ly = MU, 

where - 
L = vector l inear  d i f f e r e n t i a l  operator 

M =  l l  I1 11 11 

3 

and i n  every such d i f f e r e n t i a l  equation, the order of M is necessar i ly  

lower than tha t  of L. 
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- Proof. Different ia t ion of (2.1) yields 

y - HGu = (HF + H)x. 

Differentiating once again we have 

We continue i n  t h i s  manner u n t i l  n der ivat ives  have been taken, 

and then group the  results fran the  zeroth der ivat ive on down i n  matrix 

form, i.e., 

(5.2) 

- 
Y 

y - HGu 

.. 
y - HGC - (2fiG + H& + HFG)u 

. . 

. . 
- 

- I’ 

I H  

. 

. 

. 
c 

K. 

If we consider the coeff ic ient  matrix on the r igh t  side of (5.2) at  any 

time to, w e  can obtain a set of l i nea r ly  dependent rows of dimension k, 

2 6 k 6 n + 1, such that k-1 of these are l i n e a r l y  independent. We then 

merely express one of the row vectors i n  terms of the remaining 

and rewrite t h i s  re la t ionship using the l e f t  side of (5.2) (evaluated at  
to). The resul t  is  a r e l a t ion  involving y, u, 

vat ives  al l  evaluated a t  to. Since t is an a r b i t r a r y  point on the 

k-1 vectors 

and various of t h e i r  de r i -  

0 
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i n t e r v a l  of def in i t ion  of t h e  system, then as long as t h e  various der i -  

va t ives  of H, G, F are continuous, t h i s  procedure implies t he  existence 

of a d i f f e r e n t i a l  equation r e l a t ing  y t o  u, with continuous (matrix) 
coefficients.  

If the order of M is not < the  order of L, then -the degree 

of smoothness of the  elements of y (hence of x )  cannot be g rea t e r  than 

the degree of smoothness of the elements of u. 

and i t s  associated hypotheses that just the opposite i s  t rue.  

It follows from (2.1) 

Q.E.D. 

Remarks: 1. The d i f f e ren t i a l  equation obtained by the  above 

technique w i l l  not be unique if 

of t h e  row vectors used i n  the  l i nea r  dependence argument. Similarly,  

even i f  

tives of (2.1) of order higher than 

k < n + 1 since there  i s  then  a choice 

k = n + 1, uniqueness can be destroyed by considering deriva- 

n. 

2. It should be emphasized that (5.1) i s  a well-defined ordinary 

d i f f e r e n t i a l  equation only f o r  input functions which a= i n  the domain of 

M. However, it has become common practice,  by introducing 6-functions, 

t o  regard (3.1) as an equation which has a meaning defined i n  accordance 

with the  formal operations associated with 6-fmctions when %he elements 

of t he  input u do not have t h e  normally required smoothness properties.  

5.2. Relationship of a System's Input-output D i f f e ren t i a l  Equa- 

t i o n  t o  i t s  Canonical Structure.  

It i s  assumd i n  t h i s  discussion that the  dimension numbers of 

those parts of a system's canonical decomposition (type I, 11, III, o r  

IV) Labeled "b" and "d" i n  Theorem 7 are constants. 

The main result is given by 

THEOREM 19. (i) The input-output d i f f e r e n t i a l  equation of a 
given system (2.1) depends only on pa r t s  "b" and - "d" of t he  system's 

canonical decomposition ( t E  I, 11, 111, - o r  IV). 
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(ii) If the  dimension of the  "b" part i s  zero, t h e  input-output 

d i f f e r e n t i a l  equation i s  a homogeneous equation i n  the  output y. 

7 Proof. (i) Follows fran the  r e l a t ion  (see (2.14)) 

y ( t )  = Hb(t)xb(t)  -I- Hd(t)xd(t) .  

b (ii) Since x (t) 0, the  input-output d i f f e r e n t i a l  equation 

is e s sen t i a l ly  implied by the  re la t ions  

dxd dd d 
d t  
- -  - F ( t ) x  

y ( t )  = Hd(t)xd(t) .  &.E .Do 

Remark: It i s  obvious t h a t  t he  input-output d i f f e r e n t i a l  equation de ter -  

mines the weighting pa t te rn  of a system. 

decomposition is empty, then, under ce r t a in  addi t iona l  assumptions, it i s  
easy t o  prove that the  weighting pa t te rn  determines the input-output 

d i f f e ren t i a l  equation. 

If the  "d" prt of the canonical 

(See sect ion 5.5. ) 

5.3. Relationship t o  the State-variable Di f f e ren t i a l  Equation 
- Preliminaries. 

We now consider the  problem of obtaining the  input-output differen-  

t i a l  equation from a given s t a t e  var iable  d i f f e r e n t i a l  equation. 

For s implici ty  we r e s t r i c t  ourselves t o  those systems such that 

(i) the dimension numbers of a l l  parts of any given canonical 

decomposition, with the exception of t he  "b" part, are zero. 

(ii) The systems possess the  property of d i f f e r e n t i a l  obsenmbi- 

l i t y  on t h e i r  in te rva ls  of def ini t ion.  (See Def in i t ion  6.) 



Consider the diffezentially observable system (2.1). As far 
as t h e  input-oubput charac te r i s t ics  are concerned, we may replace (2.1) 

by the more convenient set of equations 

(5.3) (b) 

(3.2 - = e ( t ) u ( t )  at  

where  P(.) and e ( - )  a?.%! as given i n  (3.13), and 

(5.4) f ( t )  = O ( t o ,  t ) x ( t )  

so that (5.3) and (2.1) a= related by a l i n e a r  transformation on the 

state space as shown i n  (5.4). 

E the (left) inverse of Y(.) i n  (5.3) were t o  exist, one could 
solve f o r  E; 
obtain a d i f f e r e n t i a l  equation re la t ing  y t o  U. Since Y(*) is an 
r x n matrix with r 6 n, the  rank of Y can be n only i f  r SJ n, 

and 

posed problem can be found. 

i n  (5.3)(b) and substitute the result i n t o  (5.3) (h) t o  

the latter condition is necessary i f  such a t r i v i a l  so lu t ion  t o  t h e  

Qt us consider the more in te res t ing  case r < n. The (left) in- 

verse of I(*) does not exist, but if we d i f f e E n t i a t e  (5.3) (b) and 

group the  resu l t ing  equation with (5.3) (b), the mnk of the  coef f ic ien t  

mtrix of the  s t a t e  vector w i l l  be l a r g e r  than the rank of 
question arises as t o  the number of derivatives needed i n  order  t o  solve 
f o r  2. 
preceding q E s t i o n  by considering separately the two cases l i s t e d  below. 

Y(*). The 

Because of notat ional  complexities, it is expedient t o  answer the 



Case 1: n is  divisible by r 
Case 2: n is not divisible by r. 

5.4. Discussion of Case 1. 
n Let I = ?  

We then have 

"EQREM 20. Consider the  d i f f e r e n t i a l l y  observable s y s t e m  (5.3) 
defined on an i n t e r v a l  I. If n (the dimension of the  state space) 

is d iv is ib le  by r (the dimension of the output space) then the m a t r i x  

( t )  = c o l  ( Y ( t ) ,  Y (1) (t), ...) H(1-l) (t) ) (5.5) v l Y l  

is n o n s i n g u r  Vt E I. 

7 F'roof. gy Theorem 6 the n columns of Y( ) m u s t  s a t i s f y  a 
vector  d i f f e r e n t d l  equation defined on I. By applflng the  machinery 

used i n  the proof of Theorem 5, it is e a s i l y  shown that such an equation 

e x i s t s  09 order I .  Then v [ ~ ~ ( * )  i n  (5.5) is a fundamental m a t r i x  of 
t h e  l a t t e r  and is hence nonsingular on I. Q.E.D. 

Consider  now the first i derivat ives  of (5.3) (b), given by 

(5.6) 
k-1 

j=o 
7 = t  

d 

where w( t ,  7) is the weighting pattern of (5.3) given by 

(5.7) w ( t ,  7 )  = ru(t)s(.r). 



Eqmtion (5.6) i s  a set of I r-dimensional vector  equations. 

1 3  r-dimensionsl vector  sets If we group (5.3) (b) with the first 
together  we get the  equation 

ex i s t s .  

in (5.8) a d  subs t i t u t e  t he  resul t  i n t o  the 

Hence, we can solve f o r  

1% equation of (5.6) t o  
('PI From Theorem 21, the  inverse of V 

x 
yield the  desired result 

A 

where 

= r x r iden t i ty  matrix Ir 
(t) = inverse of v (t) i n  (5.5). t u  
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Notes: (i) The homogeneous equation ((5.9) with u 0 )  is satisfied 
by the n columns of I n  f ac t ,  the  la t ter  i s  a fundamental matrix 
for,and uniquely detennineg the homogeneous version of (5.9). 

( 0 )  

U(- ) .  

becomes the Wronskian matrix of the  vIY1 (ii) r = 1, 

elements of Y( 0 )  . 
5.5. Continued Discussion of Case 1 - The Relationship of t h e  

Input-Output D i f f e ren t i a l  Equation t o  the  Weighting Pattern. 

We s k l l  show first how t o  construct the weighting pa t te rn  of a 

system from its input-output d i f f e r e n t i a l  equation (5.9) a d  secondly how 

t o  construct t k  input-output equation of a system from its weighting 

pattern (5.7). 

We begin by w r i t i n g  (5.9) i n  t h e  form 

i=o A j=o 

where the  

and the 

t h e  l e f t  hand side of (5.10) as 

(Ai(t)) are real r x r matrices, A (t) = the i d e n t i t y  matrix, I 
{Bj(t)} are real r x p matrices. Lf w e  define tk operator on 

then  the f o m l  ad jo in t  of Lt, denoted by I$, is  given by 

i di t * 
q . 1  = (-1) - ( A f ( t ) . )  

i=o ati 

where t h e  "prime" indicates transpose. 
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Iet Y!* be a fundamental matrix solution of the  homogeneous 

s olu t  ion 

LX{V] = o (v = r-dimensional row vector)  

has the property 

It i s  easy t o  show, by a straightforward extension of the scalar case 

[ 2 ] ,  that P(t ,  7 )  

output re la t ion  i s  given by 

is the weighting pattern f o r  the system whose input- 

Le . ,  i f  a l l  i n i t i a l  conditions are zero a t  t = t we have 
0' 

t 
(5.15) y ( t )  = J P(t ,  T)V(T)dT. 

to 

If w e  formally ident i fy  (5.14) with (5.lO), we can r e w r i t e  (2.15) 
as 

(5.16) 
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whe re 

(5.17) 
d j P -1 

j = O  dT 
% ( e }  = C Bj(T)  -j ( * I .  

Consecutive in tegra t ion  of (5.16) by parts provides the f i n a l  result 

where is the formal ad jo in t  of b$, i.e., 

Comparing (5.18) with ( 3 . 3 ) ,  we have t h a t  

which i s  a well known r e s u l t  i n  the  s c a l a r  case [ 2 ] .  

The inverse problem of obtaining an  input-output d i f f e r e n t i a l  

equation from a given weighting pa t te rn  i s  e a s i l y  handled by first r ea l i z -  

ing the weighting pa t t e rn  as a system (5.3) and the  proceeding as i n  

sect ion 5.4. 

5.6. Discussion of Case 2 (n  not d iv i s ib l e  by r> 

To obtain the  input-output d i f f e m n t i a l  equation from the state- 

var iable  eqmtion i n  t h i s  case, the procedure is  as follows. 

(5.3) (b )  as before t o  obtain The highest  needed value of k is now 
n the  in teger  succeeding the  number Let this in teger  be q and l e t  

m = n - r*q  (m < r). The f irst  q-1 derivati-$-es of (5.3) (b) are of the form 

Dif fe ren t ia te  
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(3.21 j 

y ( l ) ( t )  = Y (1) ( t ) G ( t )  + o ( t ) u ( t )  

. . 

Since t h e  columns of Y(-) s a t i s f y  a d i f f e r e n t i a l  equation, the 

coef f ic ien t  matrix of 2 i n  (5.21) is always of maximal rank. Hence 

choose the  first 

d i f fe ren t ia te .  The resulting equations have t h e  form 

m components of the last equation i n  (5.21) and 

. . . 

( q ) ( t )  = Y F ) ( t ) ; ; ( t )  + ( j 
m Ym 

w h e r e  YR ( 0 )  i s  the ith row of the matrix Y ( * ) .  
i 

If we regard (5.21, 22) as a set, the coef f ic ien t  m t r i x  of 
h 

is nonsingular so  that x can be solved fo r .  The result i s  subs t i tu ted  

i n t o  the  equations 
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0 . 
e . . 

. 
0 . . . 

We then have a set of r d i f f e r e n t i a l  equations r e l a t ing  the var iab les  

t o  ul, ..., u O f  these equations, r - m aiy of order 
P. Y p  -..> Y, 

q, t h e  r e s t  are of order q+l. The t o t a l  number of l i n e a r l y  independent 

solut ions is  therefore  

columns of Y (  0 )  

they m u s t  form a basis f o r  t he  so lu t ion  space of the  latter.  

(r-rn)*q + m(q-1) = n. We note that s ince t h e  

are solut ions of the associated homogeneous equation, 

W e  now discuss the  problem of obtaining the  weighting pa t te rn  from 
a given input-output d i f f e r e n t i a l  equation. Since r doesn't divide n 

we cannot put (5.23) (with subs t i tu ted  for) i n to  the form (5.10) and 

have the  determinant of the  coef f ic ien t  of the  highest  der ivat ive 0. 

Hence, given an  input-output d i f f e r e n t i a l  equation of t h e  form (5.10) 

with de t  A (t) = 0, we first check if  the given equation is  equivalent 

t o  (5.23) (with x subs t i tu ted  f o r ) .  If it is, the  weighting pattern i s  

obtained as follows. 

q + l  
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L e t  

z1 = 

z2 = z; 

. . 
= z' 

2q+2 2q+l Z 
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Equation (5.24) can be wri t ten  as 

(5.25) 

c 

dzl 
7 

d t  

. . 
dz2p+3 
d t  - 

= A ( t )  

- 
1 Z 

. 

2pt-3 
Z 

- 

+ E( t )u ( t ) .  

cv 

Now, i f  @ 

pat te rn  i s  

is the t r a n s i t i o n  matrix for (3.25), t h e  associated weighting 

G ( t ,  T) = qt, T ) Z ( T ) .  

The solut ion of (3.25) is  (with zero i n i t i a l  conditions a t  t = t 0 ) 

Since we are in te res ted  only i n  yl, . . . , 'r (i.e., z 
Z p+2' 1' we simply eliminate aLL the  rows of 

The remaining matrix is the weighting pa t te rn  f o r  t he  o r i g i n a l  d i f f e r e n t i a l  

e q m t  ion. 

which don't correspond t o  z 
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6. Conclusion. 

This pa,per has presented a comprehensive exposi t ion of ce r t a in  

topics  i n  l i n e a r  system theory i n  which both new and o ld  results have 

been incorporated within a s ingle  framework. The introduct ion of a n t i -  

causal systems in to  the  theory has allowed meaningful extension of pre- 

vious results and has aided i n  c la r i fy ing  and solving some well known 

problems. 

Although w e  have concentrated exclusively on time-domain repre- 

sentat ions f o r  l i n e a r  systems the  concepts discussed here play a s igni -  

f ican t  role i n  transfom-domain a n a l y s i s  of l i n e a r  systems. Specifically,  

the concepts of C and A impulse responses, ad jo in t  systems, and dual  

systems arise qui te  na tura l ly  i n  the  development of the system function 

approach t o  input-output analysis of l i nea r  systems [ll]. 
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Figure 3 -The functions g(= )  and h(*)  in (3.18). 



Figure 2 - The Canonical Structure of a System 
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